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Abstract: Self-locking worm gears have the advantage, that they
can position loads, blocking any further movements. This feature
exploits the physical effect of self-locking. This provides an
efficient solution, since any further locking devices, such as
brakes, can be omitted. A load of arbitrary dimension is safely
held in position even if the motor is turned off.

In practical applications the exploitation of self-locking is not
free of problems. Under certain circumstances chatter vibrations
can arise, which have a negative impact on comfort and noise
generation, increase wear, and can lead to instabilities, which
render impossible the operation of the equipment.

The paper examines the influence of various parameters on the
occurrence of chatter phenomena — analytically for systems with
few degrees of freedom as well as numerically for complex
vibratory systems. The results are summarized in stability charts
as functions of similarity indicators and are discussed. Known
charts are extended by the additional condition of damping influ-
ence.

The developed physical vibratory model for the worm gear
considers its relevant geometry, mass, and stiffness parameters.
The model permits the simulation of arbitrary worm gears under
considering the interactions with the surrounding vibratory
components of drive, output side, and bearings. Complex drive
systems with manifold nonlinearities are hardly accessible via
analytic solutions. Using simulation, additional driveline factors
influencing the dynamic behavior (and the chatter in particular)
are identified, which exceed the conclusions from analytical
solutions found in hitherto existing directives.

The paper provides the design engineer with utilities and tools
for preventing chatter vibrations in worm gears. Examples from
practice demonstrate the effectiveness of various measures
which can be taken in order to avoid chatter. Physical and
mathematic interrelationships are explained and tools are pro-
vided with which the design engineer can forecast or avoid chat-
ter vibration in drive trains with worm gears. Practical examples
demonstrate the effect of different methods.

Keywords: Vibrations, Parametric Excitation, Self-Locking,
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1 Introduction

It is state of the art in the estimation of dynamic loads
in machine drive systems, that specialized models are
developed for typical components. Consequently, there
are specialized software tools for spur gears, planetary
gears [7], crank mechanisms, belt drives, and many other
machine parts [8].

This paper introduces a computational model for
worm gears. This nonlinear model has the peculiarity, that
it cannot be linearized any more, even for vibrations with
comparatively small amplitudes. Due to backlash and fric-
tion, the model structure (i.e., the number of degrees of
freedom) change in dependence of the state of vibration.
As a consequence, the classical stability concept cannot be
applied to worm gears. Over time the worm gear passes
regions, where vibration amplitudes grow exponentially
(classical instability), which then are followed by regions,
where the vibrations are damped (stable). In the sequel we
consider all cases as “unstable”, where the vibrations grow
over a certain period of time, because this already leads to
destructively large amplitudes.

In the development of drives containing worm gears it
is important to know, how the system parameters influ-
ence the appearance of chatter vibrations. Thereby the
boundaries of instability regions are of particular interest.
These dangerous areas must be avoided during operation.
The VDI Guideline 2158 [6] states: ,,Chatter is the
continuing change of the contact surfaces of the force-
transmitting elements in gearboxes.” The guideline
assesses the stability of a driveline against chatter using
just a few parameters of the corresponding rigid-body
system, cf. also [1].

Often chatter is considered to be caused by the differ-
ence between the static and kinetic friction coefficients or
a decreasing friction characteristic. In reality, also stiff-
nesses, dampings, and backlashes have an influence on
chatter vibrations. These effects are considered in the
publications of Oledzki [2], Veiz [3], and
Jiang/Steinhilper [4], [5], which also give stability charts.
The damping influence was rendered more precisely in [9].
The questions about the influence of additional parameters
or neighboring vibratory components are still unresolved.
This study is going to show, that chatter vibrations can
also arise for constant friction coefficients and how the
resulting dynamic loads can be computed. Of particular
interest is the influence of tooth geometries, rotational
speeds, backlashes, inertias, external loads, stiffnesses and
dampings in the drive and the gears, as well as frictions,
on the self-excited vibrations and the resulting vibration
loads in the complete drive system.



2  Theoretical Background, Explained on the
Simple Example of a Worm Gear with Elastic
Drive Shaft

2.1 Equations of Motion
First, the model depicted in Figure 1 und Figure 2 is

examined. It is composed of the following components,

which have 12 parameters:

Torsional stiffness and damping of the kg, dry
drive shaft

Radius of the worm wheel and inertia on r, J;
the worm shaft

Stiffness and damping of the toothing ky, dy
Pressure angle of the teeth, pitch angle of Oy, ¥
the worm

Backlash and friction coefficient in the o, U

tooth contact

adius of the gear wheel and inertia on 7y Jo

shaft 2

In addition to the parameters, the angle @q(t), the
torque M,(t) on the worm, and the output torque M,(t) can
be given. By setting the appropriate @q(t), the startup,
stationary operation, and braking of the model in Figure 1
and Figure 2 can be described. So, in contrary to [5], there
is no assumption of the drive to run at constant speed only.
Braking torques on the worm resulting from bearing fric-
tion can be assigned to M;. The model permits to find
parameter sets for stable (i.e., chatter-free) as well as
unstable (with chatter) operation in an analytical way.
This procedure is explained in the sequel.

gear wheel

motor

WOrm

Figure 1: Hoisting unit with worm gear

motor drive worm toothing  gear wheel
shaft and load
M 2 ~
g MO ko2 M (1)
. n 4,
0, 1 e
— dT — d\: "22 —
Py =olt) P 2]

Figure 2: Model of a worm gear with elastic drive shaft and
toothing with elasticity and backlash

The equations of motion for the model depicted in
Figure 2 follow, e.g., from the dynamic torque balance
equations of the rotary masses (cf. [8] and [9]):

J@ +(dy +dye) +(ky +hyc)o —dycud, —k,cup, =...

(D
=M, +sign(Ap)k,c, §+ k@, +d, @
1@, —dyes@ — kyo, @+ dycu@, + kycup, =
. )
=M, - sign(A@)k,c, 2 2)

The transmission ratio # of a worm gear without
backlash is defined as
u=r/(s-tany), 3)
The transmission ratio relates the angle @, on the
drive side to the angle @, on the driven side as @, = u@, .

Due to elasticity and backlash in the toothing there
appears a relative angle

Ap=¢ —ug, )
which corresponds to a relative displacement
As=r cosa,sinyAg (%)

at the tooth contact point in normal direction (cf.
Figure 1). If the worm and the gear wheel are in contact, a
response torque is assumed, which depends linearily from
the relative displacement and the relative speed. The teeth
are deformed, if ‘As‘ >5/2.

The angles @;(t) and @y(t) can be computed by a
numerical integration of equations (1) and (2). After
solving the differential equations, all other quantities of
interest can be computed, such as rotary speeds and
accelerations, the torque M in the drive shaft (cf. (6))
and the tangential force F, in the reference circle of the

tooth contact according to (7).

M, =k (@ —@)+d; (@ —¢,) (6)
. . . )

F, :|:kV03 (@, —u-@,)+d,c; (¢, —u@,)+sign(Ap)k,c, E}/rz %)

The coefficients ¢, in (1) and (2) depend on the sign

of the relative angle 4¢ and on the speed ¢, . This can be

expressed by defining a parameter S as:

S = sign(Ap) - sign(¢) = sign(Ap- ) ®)
For the response torques the coefficients according (9)

to (12) are obtained, following the derivations given in [4]

and [5]. The coefficients describe the tangential compo-

nents of the dynamic friction force.

¢, =rt-c =rl-cos’a, -siny-sin[y+p-S)|/cosp ()
¢, =1, ¢, =1, -cosa, -sin[y+p-S]/cos p (10)
cy=r-r,c;=1-1,-cos’a, -siny-cos|y+p-S|/cosp (11)
c,=r,-c, =r,-cosa, -cos|y+ p-S]/cos p (12)
Within the backlash, i.e. for \As\ < o/2, the contact
forces and thus the coefficients ¢, equal zero. The friction
angle P results from the friction coefficient 4 and the
pressure angle ¢, of the toothing:
p =arctan(u/cosa,) (13)

2.2 Derivation of the Conditions for Stability

Chatter vibrations do not arise inherently, but only if
the parameters of the drive system are located in a region
of instability. The boundaries of such regions can be esti-
mated using classical approaches, i.e. without solving the
differential equations.



The estimation of stability boundaries starts with the
consideration, that the first two coefficients ¢, and ¢,
can become negative for self-locking worm gears (i.e., for
y < p ). This can only happen, if §=-1, which means
that the signs of the rotary speed ¢, and the relative angle
Ag are different from each other. This happens if the load
is lowered (¢, >0) and a preload (Ap<0) exists in the
direction of motion or if the load torque A, acts in the
direction of motion.

The coefficients ¢, and ¢, are positive in all oper-
ating modes, since cos[;/ +p- S] does not become negative

due to the small values of y and p.

In order to assess the stability, an exponential ansatz
and the linearization of (1) and (2), which is applicable for
small oscillation amplitudes, are used (Lyapunov). From
the characteristic equation

J A +(dy +dye)A+ (k, +kyc) —d,cud—kycu —0 (14)
—dycA—kyc, T A +d,cud+k,cuu -

or, respectively, the 4th-order characteristic polyno-
mial
PA)=A" +b -2 +b, -2 +b,-A+b, =0 (15)

with the coefficients
b=, +cd,)/J, +ucd,!J,
b2 = (kT + Clkv )/‘]l + MC3kV /J2 + MC3deV /(JIJZ) (16)
by =ucy(d;k, +d,k;)I(J,J,)

b, =uck k, I(J,J,)
the four eigenvalues /L = 0; + j w; can be computed.

The real parts J; of these eigenvalues define the damping,
whereas the imaginary parts ; define the natural fre-
quency (angular frequency). The motion of the worm gear
is stable, if and only if the real parts of all four eigenval-
ues are negative.

The coefficients p, and b, can become negative, if ¢,

is negative. p, and b, are always positive, since ¢, is
always positive. In an undamped system b =0 and
b, =0 is hold. Using the ROUTH-HURWITZ criterion it
can be estimated without solving (15), whether at least
one of the four eigenvalues has a positive real part. After
some short derivations, this leads to the following three

conditions for negative real parts J; of the eigenvalues or
for a stable motion respectively:

b, >0 (17)
bb, —b, >0 (18)
bbb, —bb, —b? = (bb, —b,)b, —b’b, > 0 (19)

Condition (18) holds, if condition (19) holds, which
is due to the positive signs of b3 and b4. This implies, that
a stable motion of a worm gear with elastic drive, as
depicted in Figure 2, is possible, if the conditions (17) and
(19) are fulfilled. The motion becomes unstable, if one of
the conditions does not hold. From condition (17) follows
the first condition for instability:

Jo_ a4y _tan(p—-p) d; -tan(y) (20)
J, u-c u®-tan(y) d, r;c,

Chatter vibrations arise in the worm gear, if the ine-
quality (20) becomes true. This can happen only for
¢, <0 or § =1 respectively, and thus only for self-lock-

dy-u-c,

ing worm gears. For 4, =0 the inequality becomes identi-

cal to condition (21) derived by FUSGEN (cf. [1]), which
became part of the VDI Guideline 2158 (equation (49)
therein).

S tan(p—p) Q1)
J, u’-tan(y)

It is well known, that from the first condition for
instability (20) follows, that the risk of chatter vibrations
grows for increasing friction angles p, decreasing pitch
angles yand decreasing transmission ratios u#. An increase
of the torsional damping 4, in the drive shaft reduces the

interval of instability for a given ratio J I, According
to the condition (20) an increase in the damping 4, of the
toothing or of the coefficient C% /tan(y) reduces the stabi-
lizing effect of the torsional damping d.,..

It is interesting to note, that the toothing stiffness ky
and the torsional stiffness k; do not influence condition
(20). The backlash ¢, the load torque M,, and the motion
@o(t) do also not affect the stability boundaries, but they
determine the intensity of the self-excited vibrations in the
unstable region.

(19) forms the second condition for instability. This
condition also describes the influence of the elastic drive.
However, the condition is so complicated, that it is
impossible to derive straightforward relationships in an
analytical way. Instead, the condition must be evaluated
numerically for the parameter ranges of interest.

In the sequel, the damping constants 4, and 4, ,

which bear physical units of measurement, are substituted
by the dimensionless damping measures D, and D,

respectively. These follow from the relationships (22) and
(23). For large transmission ratios U they correspond to
the dimensionless LEHR’s damping values.

d, =2-Dy -k, -J, [N -m-s] (22)

d, 1} =2-D, -k, -r}-J, [N-m-s] (23)

In addition, a dimensionless damping ratio is intro-
duced using: D,, =D, /D,

d, :&. ky - J, -D. . ky - J,| 24)
dv~r22 D, kv~r22~./2 " kv~r22~J2

The product (Dyy - 1,) has the same meaning as the

damping coefficient ¢ in [5] and can be used for result

comparisons.

2.3 Generation and Interpretation of Stability Charts
The following fixed parameter set for the worm gear,

as found in [4], [5], and [8], is used:

a, =20° y=5.3228°, u=0.132 (p=8°),

(25)
r, =3.235mm, r, =18.98 mm (u=63), J, =0.1 kg-m*
k, =1.7728-10° N /m, d,, =1250N -s/m (26)
(D, =0.028)

In the computations the inertia J; ranges from
107 kg -m* t0 107 kg-m*, the torsional stiffness k7 from
510° N-m to 5N -m.

Figure 3 shows the boundaries between the stable
(above the lines) and the unstable (below the lines) region

according to the first condition for instability (20), if the
torsional damping is dT = 0. The chart illustrates the



parameter influences, which are described by the classical
FUSGEN criterion (21).
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Figure 3: Stability boundaries according to the first criterion
(20), depending on friction angles p and pitch angles y (the

stable region is situated above the lines)

An increase of the torsional damping (4, reduces the
unstable interval for the ratio J,/J, compared to the chart
in Figure 3. The increase of the damping d, in the tooth

contact or of the coefficient c,/tan(y) reduces the

stabilizing effect of d, according to condition (20). Also,
(20) defines an unstable region for small friction
coefficients and very small ratios J,/J,. The boundaries

of the region depend on the stiffnesses of the drive shaft
and the tooth contact.
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Figure 4: Stability chart for D, =0.014 according to the

second criterion (19)

Figure 4 shows the stability boundaries according to
the second condition for instability (19) for S =-1, a
torsional damping d, and a tooth contact damping d,
following from (22) and (23), and D, =0.014. Additional
computations for the same parameter set have confirmed,
that there are no unstable regions for S = +1.

As can be seen from Figure 4, the unstable region for
a damping ratio D,,, =25 has an oval shape. There is no

instability for stiffness ratios k. / (kv . rlz) bigger than 0.22.

For the damping ratio D,, =5 the unstable region has an

oval shape too. However, it appears more narrow and
stretched. For stiffness ratios larger than 1 there is also no
unstable region (outside the displayed area in Figure 4).

It is interesting to note, that for small stiffness ratios
the unstable region for J;/J, broadens with increasing

damping ratio D, (compare, e.g., the unstable regions
for D,, =5 and D,, =25 and small stiffness ratios

<0.10).
The unstable region for the damping ratio D, =1 ac-

cording to the second criterion has also an oval shape. For
stiffness ratios bigger than 3 there is no instability (outside
of the displayed area in Figure 4). The boundaries of the
unstable region for D, =1 coincide well with

experimental results from [5], which are marked by little
circles in Figure 4. Also, D,, =1 results in the smallest

instability region. The region broadens for smaller as well
as bigger for Dry.

It follows from Figure 4, that the unstable region be-
comes shorter and broader with an increasing damping
measure D, . Apparently, the increase in torsional

damping does not influence some of the design variants.
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Figure 5: Stability boundaries for D, = (.056 according to

the second criterion

Figure 5 shows, that for a damping measure
D, =0.056 (d, =2500 Ns/m) all unstable regions are

smaller than for the damping measure D, =0.014
(d, =625 Ns/m) as seen in Figure 4. The unstable region
for D,, =25 virtually ceased to exist in Figure 5. The
unstable region for the damping ratio D,, =5 became

shorter by about 15 times. It has an oval shape and covers
a very small area.

If follows from Figure 5, that the increase of the
damping measure D, of the tooth contact together with a

constant damping ratio Dy reduces the area of the unsta-
ble region. However, in some design variants the increase
of the tooth contact damping D, has no influence.

Using stability charts the designer can estimate, which
parameter changes help to leave the dangerous unstable
region. Depending on the location of the operating point
in the unstable region an increase or a decrease of the
ratios of inertias or stiffnesses may be feasible (this is
already known from [4] and [5]). The boundary curves are
closed from the right. So, under consideration of the
damping, there can be found further stable operating
points, where the ratios of inertias as well as damping are
increased. These points can be used in order to stabilize
the system without modifying the natural frequencies.
Another option for a reduction of the unstable region and



the achievement of stable operating conditions is the
increase of the damping measures D, and D, .

3 Example: Paper Reel Changer
3.1 Analytical Solution for a Paper Reel Changer

A paper reel changer is part of a printing machine,
which supplies a new paper reel to the machine once the
old one has finished. For one full rotation, using a lever,
the heavy reel is first lifted by 90 degrees, than — con-
tinuing the rotation - is lowered and finally is lifted by 90
degrees again.

Figure 6 shows a sketch of a paper reel changer with a
worm gear drive. The paper reel with a mass m, =175kg
is mounted to a frame, which is connected to the worm
gear via a drive shaft. The load torque results from the
weight of the paper reel and depends on the current angle
of the frame and the lever arm [, =1,2 m:
M,=m,-g-cos@,-l, 27)

During one rotation of the frame the load torque acts
in the direction of the rotation during the lowering of the

load, as well as against the direction of rotation when the
load is lifted.

frame

paper reel
motor

worm gear

Figure 6: Paper reel changer with worm drive

The original parameters of the worm drive are given
as follows (cf. Figure 1 and Figure 2):
a,=20° y=5.3228°, ©u=0.134 (p=8°),
r, =18.05mm, r, =105.95mm (u = 63) ,
J,=33kg-m’, k, =2-10° N/m, d, =21470N -s/m
(D, =0.014) (28)
J,=0.1kg-m*, k, =7000N -m, d, =0.741N -m-s
(D, =0.014)

For the given parameters the coefficients b, by, b, by
according to (16) are computed as b, =13.615 s,

b, =1.279-10° s, b, =9.004-10° s, b, =4.224-10° s™.

bb,b, —b’b, —b; =—2.607-10"s° <0, which implies
that the worm drive is unstable. Condition (21),
b, =13.615s™' >0, implies a stable drive. This shows that

the consideration of condition (21) only is insufficient for
the stability assessment.
In the stable case S =+1 the eigenvalues are

A, =(-23%209.0-i)s™" and A, = (-5.8+328.1-i)s”"

with the corresponding damped natural frequencies f; =
33.3 Hz and f,=52.2 Hz (f; = w;/(2x)). The corresponding
LEHR damping values are D;=0/w;=0,011 and
D;=0/w,=0.017. For §=-1 the eigenvalues are

A, =(-30.412613-i)s" and A, =(23.1£262.9-i)s”"

with the corresponding damped frequencies f; = 41.9 Hz
und f>,=42.0 Hz. The positive real part of the eigenvalues
3 and 4 indicates that the oscillations with frequencies at
about 42 Hz are unstable.

For the given parameters (28) the worm gear corre-
sponds to the point P1 in Figure4 (with
k, /(k, -r>)=0.107 on the x axis and J,/J, = 0.003 on

the y axis). Apparently, P1 belongs to the unstable region.
Figure 4 also indicates that stability can be achieved either
through an increase or through a decrease of the inertia J,

as well as of the torsional stiffness.

3.2 Dynamic Analysis of the Vibration Behavior
3.2.1 General Remarks

Using numerical simulation, drives incorporating
worm gears can be comprehensively analyzed. For any
drive configuration, no matter how it is structured and
how many components are part of the system, the simula-
tion can assess, whether chatter vibration will occur or not.
The shape of the self-excited vibrations (and thus the
dynamic loads on the components) can be observed, even
in the case of chatter.

The worm gear can be analyzed as part of a more
complex drive system too, where, e.g., motor and brake
characteristics or drive motions are defined by prescribed
characteristics. This allows examining the combination of
forced and self-excited vibrations even in the nonlinear
case. Such solutions cannot be found in an analytical way.

It will be shown in the sequel, that the conclusions
drawn from the stability charts can be confirmed by
numerical simulation. Under closer examination the
simulation results can deepen significantly the under-
standing of the physical processes. The results presented
in this paper were achieved using the commercial simula-

For these wvalues condition (19) evaluates as tion tool SimulationX [10].
sourcel
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Figure 7: Model of the paper reel changer with elastic drive shaft im SimulationX



3.2.2 Time-Domain Simulation for the Unstable
Parameter Set P1

The examination of the influence of backlash, drive
speed, or load torque on the complete system requires the
numerical integration of the equations (1) and (2). It is
also necessary for the computation of force and motion
quantities and their amplitudes over time. Using a simula-
tion tool the user does not have to worry about the numeri-
cal integration himself.

Figure 7 shows the simulation model for a paper reel
changer with elastic drive shaft. This model corresponds
to the model in Figure 2, with ¢, being the rotation angle
of the motor, ¢, the rotation angle of the worm, and ¢, the
rotation angle of the gear wheel and the frame. The drive
parameters as given in (28) correspond to the point P1 in
Figure 4, so that chatter vibrations are to be expected.

The load torque is computed from the weight (sourcel)
multiplied by the lever arm (planeTransformerl) and de-
pends on the angular position of the reel changer (cf. (27)).
The maximum load torque is M,=2060 Nm. First, the
backlash is assumed to be zero 6=0.

At the start of the simulation the frame is aligned
horizontally. The first movement is upwards, i.e. the reel
is lifted. The motor speed is ny = 472.5 rpm, the average
speed of the worm is n, = 7.5 rpm. Consequently, the ro-
tary speed of the frame is @,, =2, =27/8 rads, ie.,
one full rotation is completed in 8s. Figure 8 depicts the
simulation results for this model. The chatter vibrations
start, once the reel has passed the topmost position at t = 2
s. The chatter continues for the complete lowering phase,
which lasts 4 s.

rad/s? — alp - inertia2
150

100
50

0
-50
-100
-150

0 1 7 8

Figure 8: Angular acceleration (), over time for the elastic
drive without backlash (one full rotation in 8 s)
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Figure 9: Angular acceleration {, (zoomed section of the

graph in Figure 8) and parameter S for the backlash-free
reel changer with elastic drive

Figure 9 shows a zoomed section of Figure 8, together
with the parameter S according to (8). The shape of the
chatter vibration seems to be sinusoidal on the first glance,
but it is composed of two sections. Due to the permanent
change between stable (S =+1) and unstable (S =-1)
behavior a stationary scenario with finite amplitudes in the
chatter vibration builds up. Since the sign of the speed ¢,

is constant, the parameter S depends only on the relative
angle A (i.e., only on the contact flank).

rad/s —— y-om_inertial
51

50 1

48 T T T
0 1 2 3 4 5 6 7 8

Figure 10: Rotary speed ¢, over time for the reel changer
with elastic drive (for one full rotation in 8 s)

In self-locking worm gears (y < p) arise chatter vibra-
tions, if the quantity S according to (8) equals -1 and if at
least one of the two conditions for instability becomes true.
During one period the sign of S might be change. In this
case, an interval with growing oscillation amplitudes is
followed by an interval with decaying amplitudes. Thus,
the ,,unstable® chatter vibrations contain phases of rising
as well as shrinking oscillation amplitudes within one
vibration period. This is clearly observable from the time
functions.

The angular acceleration amplitude of the gear wheel
during chatter in the load lowering phase is virtually
proportional to the load torque and has its maximum at

@,=110 rad/s>. The main frequency of the chatter is about

42 Hz (see the eigenvalue computation above) and is lo-
cated between the two natural frequencies of the stable
system (33 Hz and 52 Hz). In this variant, there is no
interaction between the natural vibrations and the chatter
vibrations. If the chatter frequency gets closer to the natu-
ral frequencies, interactions take place and the maximum
amplitudes of the chatter vibrations grow.
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Figure 11: Normal forces in the tooth contact (left and right
flank) for the reel changer with elastic drive and without
backlash (for one full rotation in 8 s)

Figure 11 shows that the tooth contact forces during
chatter (middle of the graph) can exceed the static mean
value many times.

Parametric variations unveiled that the angular
acceleration amplitudes do not depend on the rotary speed.
However, when doubling the load torque the maximum
acceleration amplitude is also doubled.

The impact of a backlash between the tooth flanks in
the worm gear is illustrated in Figure 12. The backlash
affects the system in particular for small load torques (i.e.,
for a small preload). After the backlash has been passed
due to the direction change of the load torque, for 2-3
seconds after starting the load lowering there are contacts
on both tooth flanks. This is observed in particular for
larger backlash. The amplitudes become 2-4 times bigger
than for the backlash-free case (cf. Figure 11).
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Figure 12: Normal force at teeth over time for the reel
changer with elastic drive (point P1) and backlashes of
0 =0.25, 0.5, and 0.75mm (top to bottom; one full rotation in
8s)

3.2.3 Time-Domain Simulation for the Unstable
Parameter Set P7
Figure 13 to Figure 17 show the time functions for the
reel changer without backlash using the parameter set P7
in Figure 4 (i.e., with a ten times smaller inertia J, and a

ten times smaller stiffness ky compared to the original
parameter set P1 (28)).
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Figure 13: Angular acceleration of the gear wheel ¢, during

the lifting of the load for the parameter set P7 (there is also
chatter during lifting)

First: The maximum acceleration during load low-
ering (interval from 2 s to 6 s in Figure 13) reaches about
700 rad/s. It is 5.5 times bigger than for the parameter set
P1 in Figure 8.

Reason: The natural frequencies of the system (81 Hz
and 21 Hz) are close to twice the chatter frequency and
half the chatter frequency. When lowering the load the
worm shaft initially oscillates with the chatter frequency
41.8 Hz (cf. Figure 15). These vibrations excite the natural
oscillations at 81 and 21 Hz. Within the time interval from
2.3 s to 2.6 s the excitation with the resonance-like re-
sponses can be seen. The amplitudes of the forced vibra-
tions reach their maximum values very quickly. After-
wards the system oscillates “stationary” with frequencies
around 31 Hz=(21+41)/2 Hz and 61 Hz=(81+41)/2 Hz
(see Figure 14).

Second: In Figure 14 the contact parameter S changes
its sign several times within one period.

Reason: As seen in Figure 15, the originally positive
speed of the worm (upper red line om_inertial) reaches
zero and even small negative values due to the oscillations.

Consequently, the parameter S changes sign several times
per period, depending on the flank contact (positive or
negative relative angle Ag) and the rotary speed ¢,.
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Figure 14: Angular acceleration {, of the gear wheel

(zoomed section of Figure 13) and parameter S during load
lowering for the parameter set P7
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Figure 15: Rotary speed ¢, of the worm and parameter sf of

the flank friction for the parameter set P7 during load
lowering

Third: The blue (lower) curve sf-flankFriction in
Figure 15 shows the state sf of the friction between the
tooth flanks in the worm gear (0 — sticking, +1 or -1 - slid-
ing). Apparently, the friction contact sticks for small ro-
tary speeds ¢, of the worm. The sticking friction (together

with the self-locking) brakes the oscillations and restricts
the amplitude growth.

Fourth: In this variant the chatter vibrations continue
into the lifting phase in the interval between 6 s and 10 s
and do not die out (cf. Figure 13).

Reason: Figure 16 shows a segment of Figure 13 dur-
ing lifting in a time interval from 7.9 s to 8 s (end of the
full rotation) and the corresponding parameter S. There
are several segments per period, where S becomes nega-
tive. As a consequence the system becomes unstable also
in the lifting phase. The time intervals, where S =-1,
cover about 40 % of a period. The energy brought into the
system in these phases is large enough to continue to ex-
cite the chatter. Thus, chatter is possible during the lifting
phase too. If in the stable phases the vibrations are not
damped strongly enough (due to low damping or strong
excitation in the unstable phases), the chatter will persist.
Then a small excitation will be sufficient for exciting and
keeping alive the chatter.
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Figure 16: Angular acceleration ¢, of the gear wheel

(zoomed section of Figure 13) and parameter S during lifting
for the parameter set P7

There are different influences of parameter variations
for this reel changer with parameter set P7. The doubling
of the drive speed of the motor is virtually double the
vibration amplitudes.



Figure 17 illustrates the influence of the backlash in
the tooth contact for the parameter set P7. The maximum
amplitude of the normal force (about 280 kN) is virtually
independent of the backlash in the interval from 0 to 0.75
mm. The bigger the backlash, the earlier the vibration dies
out in the lifting phase. So, the backlash stabilizes the
system.
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Figure 17: Normal force at teeth for the reel changer with
elastic drive (parameter set P7) for backlashes 6 =0.25, 0.5
and 0.75mm (from top to bottom) during one full rotation in
8s.

3.2.4 Time-Domain
Parameter Sets
If the inertia J; is tripled to 0.3 kgm?, the simulation
shows no chatter during the load lowering, albeit S is
negative all the time. This coincides with the location of
the parameter point P2, which is situated in the stable re-
gion in Figure 4. Figure 18 shows the respective drive
shaft torque and the evolution of the parameter S. S equals
-1 during lowering. When lifting the load, the torque is
about 5 times bigger than in the lowering phase (due to the
self-braking of the worm gear).
Comparable simulation results are obtained for the
inertia J;=0.033 kgm?, which is three times smaller than in
(28) (cf. P3 in the lower stable region in Figure 4). Also,

the variation of the shaft stiffness kT (two times bigger or

Simulation Stable

for

five times smaller than in the base parameter set (28))
gives the same results as shown in Figure 18. All lowering
phases are stable. These parameter variants are reflected

by the points P4 and PS5 in Figure 4, which belong to the
stable region.
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Figure 18: Drive shaft torque and parameter S in a reel
changer with elastic drive and without backlash for the

stable parameter set P2

Another parameter variation is described by the point
P6: J, =0.2 kgm? k, =12000 Nm/rad, D,, =2 . This

point belongs to the unstable region in Figure 4 (for the
damping measure D, =0.014). For an increased damp-

ing measure D, =0.056 the point moves to the stable

region (cf. Figure 5). Consequently, the simulation for
, =0.056 does not show chatter vibrations and gives

the same results as seen in Figure 18.

3.2.5 Consideration of Neighboring Components

In practical applications the worm gear, which is the
core of the model described here, is enclosed by further
vibratory components. An estimation of the influence of
additional masses and dampers on the drive side as well as
on the driven side with respect to the FUSGEN condition
(21) is found in [6], an estimation with respect to condi-
tion (19) in [9].

For real systems these statements can only provide a
rough orientation, since the additional drive components
contribute several new masses and stiffnesses, which
dynamically interact. In this case, reliable results are only
achievable via simulation.

Here this shall be illustrated using an unstable worm
gear which is parameterized such, that it corresponds to
point P1 in Figure 4.

Compared to Figure 7 the additional inertia inertia4
(see Figure 19) on the drive side increases the equivalent
drive mass and thus the inertia ratio J, /J,. This implies

that the point P1 moves towards P2 in the upper stable
region. If the additional inertia and the stiffness of spring-
Damperl are large enough and the stiffness of spring-
Damper4 is small enough, the worm gear becomes stable.
Otherwise the system remains unstable and further
interaction between the chatter vibrations and natural
vibrations are possible.
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Figure 19: Model of the worm gear with additional inertia and elasticity on the drive side
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Figure 20: Accelerations { , ¢, of the inertias inertial and

inertia4 and parameter S (bold line) in the model according
to Figure 19

In the model as seen in Figure 19 the inertia4 intro-
duces a third natural frequency of 116 Hz. This frequency
is close to the third multiple of the chatter frequency
(42 Hz*3=126 Hz). As a consequence the chatter
vibrations very strongly excite vibrations in the natural
frequency of 122 Hz, which is located between the natural
frequency of 116 Hz and the third harmonic of the chatter
at 126 Hz. This is well visible in the acceleration of
inertia4 in Figure 20.

Summary

The presented vibratory model for the worm gear cov-
ers the essential geometry, mass, stiffness, and damping
parameters as well as friction.

It was shown, under which conditions self-excited
chatter vibrations arise in worm gears with a flexible drive
shaft and an elastic gear contact — even for a constant fric-
tion coefficient.

For vibratory systems with 2 degrees of freedom sta-
bility charts can be computed, from which parameter re-
gions for stable as well as unstable operations can be de-
rived.

Due to the permanent change between stable (damped)
and unstable (excited) ranges there arise periodic oscilla-
tions with finite amplitudes. A numerical simulation pro-
vides quantitative predictions about vibration amplitudes
and component loads - also for the chatter vibrations.

The stability of the system depends on the damping
ratio D7y as well as on the absolute value of the damping
measures (D7 and Dy). The unstable regions shrink with
increasing Dy of the toothing and for a constant damping
ratio Dyy.

The backlash does not influence the location of the
stable regions, but it influences the dynamic loads. There
are parameter ranges, where the dynamic load decreases
with increasing backlash.

The presented worm gear model can be coupled to
other drive components in a modular way as it is done,
e.g., in the program SimulationX.

SimulationX can simulate arbitrary worm gears, their
interactions with neighboring vibratory components on the
drive side or on the driven side, as well as the influence of
the bearings.

It is recommended to use these tools for the dimen-
sioning of worm gears in drive systems in order to con-
struct safe and economic products.
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