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Abstract: Self-locking worm gears have the advantage, that they 
can position loads, blocking any further movements. This feature 
exploits the physical effect of self-locking. This provides an 
efficient solution, since any further locking devices, such as 
brakes, can be omitted. A load of arbitrary dimension is safely 
held in position even if the motor is turned off. 
In practical applications the exploitation of self-locking is not 
free of problems. Under certain circumstances chatter vibrations 
can arise, which have a negative impact on comfort and noise 
generation, increase wear, and can lead to instabilities, which 
render impossible the operation of the equipment.  
The paper examines the influence of various parameters on the 
occurrence of chatter phenomena – analytically for systems with 
few degrees of freedom as well as numerically for complex 
vibratory systems. The results are summarized in stability charts 
as functions of similarity indicators and are discussed. Known 
charts are extended by the additional condition of damping influ-
ence.  
The developed physical vibratory model for the worm gear 
considers its relevant geometry, mass, and stiffness parameters. 
The model permits the simulation of arbitrary worm gears under 
considering the interactions with the surrounding vibratory 
components of drive, output side, and bearings. Complex drive 
systems with manifold nonlinearities are hardly accessible via 
analytic solutions. Using simulation, additional driveline factors 
influencing the dynamic behavior (and the chatter in particular) 
are identified, which exceed the conclusions from analytical 
solutions found in hitherto existing directives.  
The paper provides the design engineer with utilities and tools 
for preventing chatter vibrations in worm gears. Examples from 
practice demonstrate the effectiveness of various measures 
which can be taken in order to avoid chatter. Physical and 
mathematic interrelationships are explained and tools are pro-
vided with which the design engineer can forecast or avoid chat-
ter vibration in drive trains with worm gears. Practical examples 
demonstrate the effect of different methods. 
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1 Introduction 

It is state of the art in the estimation of dynamic loads 
in machine drive systems, that specialized models are 
developed for typical components. Consequently, there 
are specialized software tools for spur gears, planetary 
gears [7], crank mechanisms, belt drives, and many other 
machine parts [8]. 

This paper introduces a computational model for 
worm gears. This nonlinear model has the peculiarity, that 
it cannot be linearized any more, even for vibrations with 
comparatively small amplitudes. Due to backlash and fric-
tion, the model structure (i.e., the number of degrees of 
freedom) change in dependence of the state of vibration. 
As a consequence, the classical stability concept cannot be 
applied to worm gears. Over time the worm gear passes 
regions, where vibration amplitudes grow exponentially 
(classical instability), which then are followed by regions, 
where the vibrations are damped (stable). In the sequel we 
consider all cases as “unstable”, where the vibrations grow 
over a certain period of time, because this already leads to 
destructively large amplitudes. 

In the development of drives containing worm gears it 
is important to know, how the system parameters influ-
ence the appearance of chatter vibrations. Thereby the 
boundaries of instability regions are of particular interest. 
These dangerous areas must be avoided during operation. 
The VDI Guideline 2158 [6] states: „Chatter is the 
continuing change of the contact surfaces of the force-
transmitting elements in gearboxes.” The guideline 
assesses the stability of a driveline against chatter using 
just a few parameters of the corresponding rigid-body 
system, cf. also [1]. 

Often chatter is considered to be caused by the differ-
ence between the static and kinetic friction coefficients or 
a decreasing friction characteristic. In reality, also stiff-
nesses, dampings, and backlashes have an influence on 
chatter vibrations. These effects are considered in the 
publications of Oledzki [2], Veiz [3], and 
Jiang/Steinhilper [4], [5], which also give stability charts. 
The damping influence was rendered more precisely in [9]. 
The questions about the influence of additional parameters 
or neighboring vibratory components are still unresolved. 
This study is going to show, that chatter vibrations can 
also arise for constant friction coefficients and how the 
resulting dynamic loads can be computed. Of particular 
interest is the influence of tooth geometries, rotational 
speeds, backlashes, inertias, external loads, stiffnesses and 
dampings in the drive and the gears, as well as frictions, 
on the self-excited vibrations and the resulting vibration 
loads in the complete drive system. 



2 Theoretical Background, Explained on the 

Simple Example of a Worm Gear with Elastic 

Drive Shaft 

2.1 Equations of Motion 

First, the model depicted in Figure 1 und Figure 2 is 
examined. It is composed of the following components, 
which have 12 parameters: 

Torsional stiffness and damping of the 
drive shaft 

kT, dT 

Radius of the worm wheel and inertia on 
the worm shaft 

r1, J1 

Stiffness and damping of the toothing kV, dV 
Pressure angle of the teeth, pitch angle of 
the worm 

αn, γ 

Backlash and friction coefficient in the 
tooth contact 

δ, µ 

adius of the gear wheel and inertia on 
shaft 2 

r2, J2 
 

In addition to the parameters, the angle φ0(t), the 
torque M1(t) on the worm, and the output torque M2(t) can 
be given. By setting the appropriate φ0(t), the startup, 
stationary operation, and braking of the model in Figure 1 
and Figure 2 can be described. So, in contrary to [5], there 
is no assumption of the drive to run at constant speed only. 
Braking torques on the worm resulting from bearing fric-
tion can be assigned to M1. The model permits to find 
parameter sets for stable (i.e., chatter-free) as well as 
unstable (with chatter) operation in an analytical way. 
This procedure is explained in the sequel. 

 

 

 
 
 

 
Figure 1: Hoisting unit with worm gear 

 

Figure 2: Model of a worm gear with elastic drive shaft and 

toothing with elasticity and backlash 

The equations of motion for the model depicted in 
Figure 2 follow, e.g., from the dynamic torque balance 
equations of the rotary masses (cf. [8] and [9]): 
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 (2) 
The transmission ratio u of a worm gear without 

backlash is defined as 
)tan/( 12 γ⋅= rru , (3) 

The transmission ratio relates the angle 1ϕ  on the 

drive side to the angle 2ϕ on the driven side as 21 ϕϕ u= . 

Due to elasticity and backlash in the toothing there 
appears a relative angle 

21 ϕϕϕ u−=∆ , (4) 

which corresponds to a relative displacement  
ϕγα ∆=∆ sincos1 nrs  (5) 

at the tooth contact point in normal direction (cf. 
Figure 1). If the worm and the gear wheel are in contact, a 
response torque is assumed, which depends linearily from 
the relative displacement and the relative speed. The teeth 
are deformed, if 2/δ>∆s . 

The angles φ1(t) and φ2(t) can be computed by a 
numerical integration of equations (1) and (2). After 
solving the differential equations, all other quantities of 
interest can be computed, such as rotary speeds and 
accelerations, the torque 

anM  in the drive shaft (cf. (6)) 

and the tangential force 
VF  in the reference circle of the 

tooth contact according to (7). 
)()( 0101 ϕϕϕϕ && −⋅+−⋅= TTan dkM  (6) 

24213213 /
2

)()()( rcksignucduckF VVVV 







∆+−+⋅−=

δ
ϕϕϕϕϕ &&

 (7) 

The coefficients 
kc  in (1) and (2) depend on the sign 

of the relative angle ∆φ and on the speed 1ϕ& . This can be 

expressed by defining a parameter S as: 
)()()( 11 ϕϕϕϕ && ⋅∆=⋅∆= signsignsignS  (8)  

For the response torques the coefficients according (9) 
to (12) are obtained, following the derivations given in [4] 
and [5]. The coefficients describe the tangential compo-
nents of the dynamic friction force. 
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Within the backlash, i.e. for 2/δ<∆s , the contact 

forces and thus the coefficients 
kc  equal zero. The friction 

angle ρ results from the friction coefficient µ and the 

pressure angle 
nα of the toothing: 

)cos/arctan( nαµρ =  (13) 

2.2 Derivation of the Conditions for Stability 

Chatter vibrations do not arise inherently, but only if 
the parameters of the drive system are located in a region 
of instability. The boundaries of such regions can be esti-
mated using classical approaches, i.e. without solving the 
differential equations.  
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The estimation of stability boundaries starts with the 

consideration, that the first two coefficients 1c  and 2c  

can become negative for self-locking worm gears (i.e., for 
ργ < ). This can only happen, if 1−=S , which means 

that the signs of the rotary speed 
1ϕ&  and the relative angle 

ϕ∆  are different from each other. This happens if the load 

is lowered ( 01 >ϕ& ) and a preload ( 0<∆ϕ ) exists in the 

direction of motion or if the load torque 
2M  acts in the 

direction of motion. 

The coefficients 3c  and 4c  are positive in all oper-

ating modes, since [ ]S⋅+ ργcos  does not become negative 

due to the small values of γ and ρ. 
In order to assess the stability, an exponential ansatz 

and the linearization of (1) and (2), which is applicable for 
small oscillation amplitudes, are used (Lyapunov). From 
the characteristic equation  
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 or, respectively, the 4th-order characteristic polyno-
mial 
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the four eigenvalues iλ  = δi + j ωi  can be computed. 

The real parts δi of these eigenvalues define the damping, 
whereas the imaginary parts ωi  define the natural fre-
quency (angular frequency). The motion of the worm gear 
is stable, if and only if the real parts of all four eigenval-
ues are negative. 

The coefficients 
1b  and 

2b  can become negative, if 
1c  

is negative. 
3b  and 

4b  are always positive, since 
3c  is 

always positive. In an undamped system 01 =b  and 

03 =b  is hold. Using the ROUTH-HURWITZ criterion it 

can be estimated without solving (15), whether at least 
one of the four eigenvalues has a positive real part. After 
some short derivations, this leads to the following three 
conditions for negative real parts δi of the eigenvalues or 
for a stable motion respectively: 

01 >b  (17)  

0321 >− bbb  (18) 
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 Condition (18) holds, if condition (19) holds, which 
is due to the positive signs of b3 and b4. This implies, that 
a stable motion of a worm gear with elastic drive, as 
depicted in Figure 2, is possible, if the conditions (17) and 
(19) are fulfilled. The motion becomes unstable, if one of 
the conditions does not hold. From condition (17) follows 
the first condition for instability: 
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Chatter vibrations arise in the worm gear, if the ine-
quality (20) becomes true. This can happen only for 

01 <c  or 1−=S  respectively, and thus only for self-lock-

ing worm gears. For 0=Td  the inequality becomes identi-

cal to condition (21) derived by FÜSGEN (cf.  [1]), which 
became part of the VDI Guideline 2158 (equation (49) 
therein).  
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It is well known, that from the first condition for 
instability (20) follows, that the risk of chatter vibrations 
grows for increasing friction angles ρ, decreasing pitch 
angles γ and decreasing transmission ratios u. An increase 
of the torsional damping 

Td  in the drive shaft reduces the 

interval of instability for a given ratio 
21 / JJ . According 

to the condition (20) an increase in the damping 
Vd  of the 

toothing or of the coefficient )tan(/*
3 γc  reduces the stabi-

lizing effect of the torsional damping 
Td . 

It is interesting to note, that the toothing stiffness kV 
and the torsional stiffness kT do not influence condition 
(20). The backlash δ, the load torque M2, and the motion 
φ0(t) do also not affect the stability boundaries, but they 
determine the intensity of the self-excited vibrations in the 
unstable region. 

(19) forms the second condition for instability. This 
condition also describes the influence of the elastic drive. 
However, the condition is so complicated, that it is 
impossible to derive straightforward relationships in an 
analytical way. Instead, the condition must be evaluated 
numerically for the parameter ranges of interest. 

In the sequel, the damping constants 
Td  and 

Vd , 

which bear physical units of measurement, are substituted 
by the dimensionless damping measures 

TD  and 
VD  

respectively. These follow from the relationships (22) and 
(23). For large transmission ratios u they correspond to 
the dimensionless LEHR’s damping values. 
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In addition, a dimensionless damping ratio is intro-
duced using: 

VTTV DDD /=  

2
2

2

1

2
2

2

1
2

2 Jrk

Jk
D

Jrk

Jk

D

D

rd

d

V

T

TV

V

T

V

T

V

T

⋅⋅

⋅
⋅=

⋅⋅

⋅
⋅=

⋅
 (24) 

The product )( 2rDTV ⋅  has the same meaning as the 

damping coefficient α in [5] and can be used for result 

comparisons. 
 

2.3 Generation and Interpretation of Stability Charts 

The following fixed parameter set for the worm gear, 
as found in [4], [5], and [8], is used:  
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In the computations the inertia J1 ranges from 
2610 mkg ⋅−  to 2310 mkg ⋅− , the torsional stiffness kT from 

mN ⋅⋅ −3105  to mN ⋅5 . 

Figure 3 shows the boundaries between the stable 
(above the lines) and the unstable (below the lines) region 
according to the first condition   for instability (20), if the 
torsional damping is dT = 0. The chart illustrates the 



parameter influences, which are described by the classical 
FÜSGEN criterion (21). 

 

Figure 3: Stability boundaries according to the first criterion 

(20), depending on friction angles ρ  and pitch angles γ  (the 

stable region is situated above the lines) 

An increase of the torsional damping 
Td  reduces the 

unstable interval for the ratio 21 / JJ  compared to the chart 

in Figure 3. The increase of the damping 
Vd in the tooth 

contact or of the coefficient )tan(/*
3 γc  reduces the 

stabilizing effect of Td  according to condition (20). Also, 
(20) defines an unstable region for small friction 
coefficients and very small ratios 21 / JJ . The boundaries 
of the region depend on the stiffnesses of the drive shaft 
and the tooth contact.  

 

Figure 4: Stability chart for 014.0=VD  according to the 

second criterion (19)   

Figure 4 shows the stability boundaries according to 
the second condition for instability (19) for 1−=S , a 
torsional damping 

Td  and a tooth contact damping 
Vd  

following from (22) and (23), and 014.0=VD . Additional 

computations for the same parameter set have confirmed, 
that there are no unstable regions for 1+=S . 

As can be seen from Figure 4, the unstable region for 
a damping ratio 25=TVD  has an oval shape. There is no 

instability for stiffness ratios ( )2
1rkk VT ⋅  bigger than 0.22. 

For the damping ratio 5=
TV

D  the unstable region has an 

oval shape too. However, it appears more narrow and 
stretched. For stiffness ratios larger than 1 there is also no 
unstable region (outside the displayed area in Figure 4). 

It is interesting to note, that for small stiffness ratios 
the unstable region for J1/J2 broadens with increasing 

damping ratio 
TV

D  (compare, e.g., the unstable regions 

for  5=
TV

D  and 25=
TV

D  and small stiffness ratios 

<0.10). 
The unstable region for the damping ratio 1=

TV
D  ac-

cording to the second criterion has also an oval shape. For 
stiffness ratios bigger than 3 there is no instability (outside 
of the displayed area in Figure 4). The boundaries of the 
unstable region for 1=

TV
D  coincide well with 

experimental results from [5], which are marked by little 
circles in Figure 4. Also, 1=

TV
D  results in the smallest 

instability region. The region broadens for smaller as well 
as bigger for DTV. 

It follows from Figure 4, that the unstable region be-
comes shorter and broader with an increasing damping 
measure 

TD . Apparently, the increase in torsional 

damping does not influence some of the design variants.  

 

Figure 5: Stability boundaries for 056.0=VD  according to 

the second criterion 

Figure 5 shows, that for a damping measure 
056.0=

V
D  ( 2500=

V
d  Ns/m) all unstable regions are 

smaller than for the damping measure 014.0=VD  

( 625=Vd  Ns/m) as seen in Figure 4. The unstable region 

for 25=
TV

D  virtually ceased to exist in Figure 5. The 

unstable region for the damping ratio 5=
TV

D  became 

shorter by about 15 times. It has an oval shape and covers 
a very small area. 

If follows from Figure 5, that the increase of the 
damping measure 

V
D  of the tooth contact together with a 

constant damping ratio DTV reduces the area of the unsta-
ble region. However, in some design variants the increase 
of the tooth contact damping 

V
D  has no influence. 

Using stability charts the designer can estimate, which 
parameter changes help to leave the dangerous unstable 
region. Depending on the location of the operating point 
in the unstable region an increase or a decrease of the 
ratios of inertias or stiffnesses may be feasible (this is 
already known from [4] and [5]). The boundary curves are 
closed from the right. So, under consideration of the 
damping, there can be found further stable operating 
points, where the ratios of inertias as well as damping are 
increased. These points can be used in order to stabilize 
the system without modifying the natural frequencies. 
Another option for a reduction of the unstable region and 



the achievement of stable operating conditions is the 
increase of the damping measures  

TD  and 
V

D . 

3 Example: Paper Reel Changer 

3.1 Analytical Solution for a Paper Reel Changer 

A paper reel changer is part of a printing machine, 
which supplies a new paper reel to the machine once the 
old one has finished. For one full rotation, using a lever, 
the heavy reel is first lifted by 90 degrees, than – con-
tinuing the rotation - is lowered and finally is lifted by 90 
degrees again.  

Figure 6 shows a sketch of a paper reel changer with a 
worm gear drive. The paper reel with a mass kgm 1752 =  

is mounted to a frame, which is connected to the worm 
gear via a drive shaft. The load torque results from the 
weight of the paper reel and depends on the current angle 
of the frame and the lever arm ml 2,12 = :  

2222 cos lgmM ⋅⋅⋅= ϕ  (27) 

During one rotation of the frame the load torque acts 
in the direction of the rotation during the lowering of the 
load, as well as against the direction of rotation when the 
load is lifted. 

 

Figure 6: Paper reel changer with worm drive 

The original parameters of the worm drive are given 
as follows (cf. Figure 1 and Figure 2): 

),8(134.0,3228.5,20 °==°=°= ρµγα
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,33 2
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VV
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,1.0 2
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( 014.0=TD ) 

For the given parameters the coefficients b1, b2, b3, b4 
according to (16) are computed as 615.131 =b  s-1, 

5
2 10279.1 ⋅=b  s-2, 5

3 10004.9 ⋅=b  s-3, 9
4 10224.4 ⋅=b  s-4. 

For these values condition (19) evaluates as  

010607.2 6102
34

2
1321 <⋅−=−− −

sbbbbbb , which implies 

that the worm drive is unstable. Condition (21), 

0615.13 1
1 >= −

sb , implies a stable drive. This shows that 

the consideration of condition (21) only is insufficient for 
the stability assessment. 

In the stable case 1+=S  the eigenvalues are 
1

2,1 )0.2093.2( −⋅±−= siλ  and 1
4,3 )1.3288.5( −⋅±−= siλ  

with the corresponding damped natural frequencies f1 = 
33.3 Hz and f2 = 52.2 Hz (fi = ωi /(2π)). The corresponding 
LEHR damping values are D1 =δ1/ω1 = 0,011 and 
D2 = δ2/ω2 = 0.017. For 1−=S  the eigenvalues are 

1
2,1 )3.2614.30( −⋅±−= siλ  and 1

4,3 )9.2621.23( −⋅±= siλ  

with the corresponding damped frequencies f1 = 41.9 Hz 
und f2 = 42.0 Hz. The positive real part of the eigenvalues 
3 and 4 indicates that the oscillations with frequencies at 
about 42 Hz are unstable. 

For the given parameters (28) the worm gear corre-
sponds to the point P1 in Figure 4 (with 

107.0)/( 2
1 =⋅ rkk

VT
 on the x axis and 003.0/ 21 =JJ  on 

the y axis). Apparently, P1 belongs to the unstable region. 
Figure 4 also indicates that stability can be achieved either 
through an increase or through a decrease of the inertia 

1J  

as well as of the torsional stiffness. 
 

3.2 Dynamic Analysis of the Vibration Behavior 

3.2.1 General Remarks 

Using numerical simulation, drives incorporating 
worm gears can be comprehensively analyzed. For any 
drive configuration, no matter how it is structured and 
how many components are part of the system, the simula-
tion can assess, whether chatter vibration will occur or not. 
The shape of the self-excited vibrations (and thus the 
dynamic loads on the components) can be observed, even 
in the case of chatter.   

The worm gear can be analyzed as part of a more 
complex drive system too, where, e.g., motor and brake 
characteristics or drive motions are defined by prescribed 
characteristics. This allows examining the combination of 
forced and self-excited vibrations even in the nonlinear 
case. Such solutions cannot be found in an analytical way. 

It will be shown in the sequel, that the conclusions 
drawn from the stability charts can be confirmed by 
numerical simulation. Under closer examination the 
simulation results can deepen significantly the under-
standing of the physical processes. The results presented 
in this paper were achieved using the commercial simula-
tion tool SimulationX [10].  

worm_gear

source1

preset1 inertia1

inertia2

planeTransformer1

springDamper1

 
Figure 7: Model of the paper reel changer with elastic drive shaft im SimulationX 

 



 
3.2.2 Time-Domain Simulation for the Unstable 

Parameter Set P1  

The examination of the influence of backlash, drive 
speed, or load torque on the complete system requires the 
numerical integration of the equations (1) and (2). It is 
also necessary for the computation of force and motion 
quantities and their amplitudes over time. Using a simula-
tion tool the user does not have to worry about the numeri-
cal integration himself. 

Figure 7 shows the simulation model for a paper reel 
changer with elastic drive shaft. This model corresponds 
to the model in Figure 2, with φ0 being the rotation angle 
of the motor, φ1 the rotation angle of the worm, and φ2  the 
rotation angle of the gear wheel and the frame. The drive 
parameters as given in (28) correspond to the point P1 in 
Figure 4, so that chatter vibrations are to be expected. 

The load torque is computed from the weight (source1) 
multiplied by the lever arm (planeTransformer1) and de-
pends on the angular position of the reel changer (cf. (27)). 
The maximum load torque is M2=2060 Nm. First, the 
backlash is assumed to be zero δ=0. 

At the start of the simulation the frame is aligned 
horizontally. The first movement is upwards, i.e. the reel 
is lifted. The motor speed is n0 = 472.5 rpm, the average 
speed of the worm is n2 = 7.5 rpm. Consequently, the ro-

tary speed of the frame is 8/22 πϕ =Ω=
Rm

&  rad/s, i.e., 
one full rotation is completed in 8s. Figure 8 depicts the 
simulation results for this model. The chatter vibrations 
start, once the reel has passed the topmost position at t = 2 
s. The chatter continues for the complete lowering phase, 
which lasts 4 s. 
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Figure 8: Angular acceleration 
2ϕ&&  over time for the elastic 

drive without backlash (one full rotation in 8 s)  
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Figure 9: Angular acceleration  
2ϕ&&  (zoomed section of the 

graph in Figure 8) and parameter S  for the backlash-free 

reel changer with elastic drive 

Figure 9 shows a zoomed section of Figure 8, together 
with the parameter S  according to (8). The shape of the 
chatter vibration seems to be sinusoidal on the first glance, 
but it is composed of two sections. Due to the permanent 
change between stable ( 1+=S ) and unstable ( 1−=S ) 
behavior a stationary scenario with finite amplitudes in the 
chatter vibration builds up. Since the sign of the speed 

1ϕ&  

is constant, the parameter S  depends only on the relative 
angle ∆φ (i.e., only on the contact flank). 
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Figure 10: Rotary speed 
1ϕ& over time for the reel changer 

with elastic drive (for one full rotation in 8 s) 

In self-locking worm gears (γ < ρ) arise chatter vibra-
tions, if the quantity S  according to (8) equals -1 and if at 
least one of the two conditions for instability becomes true. 
During one period the sign of S  might be change. In this 
case, an interval with growing oscillation amplitudes is 
followed by an interval with decaying amplitudes. Thus, 
the „unstable“ chatter vibrations contain phases of rising 
as well as shrinking oscillation amplitudes within one 
vibration period. This is clearly observable from the time 
functions.  

The angular acceleration amplitude of the gear wheel 
during chatter in the load lowering phase is virtually 
proportional to the load torque and has its maximum at 

2ϕ&& =110 rad/s2. The main frequency of the chatter is about 

42 Hz (see the eigenvalue computation above) and is lo-
cated between the two natural frequencies of the stable 
system (33 Hz and 52 Hz). In this variant, there is no 
interaction between the natural vibrations and the chatter 
vibrations. If the chatter frequency gets closer to the natu-
ral frequencies, interactions take place and the maximum 
amplitudes of the chatter vibrations grow. 

 

Figure 11: Normal forces in the tooth contact (left and right 

flank) for the reel changer with elastic drive and without 

backlash (for one full rotation in 8 s) 

Figure 11 shows that the tooth contact forces during 
chatter (middle of the graph) can exceed the static mean 
value many times. 

Parametric variations unveiled that the angular 
acceleration amplitudes do not depend on the rotary speed. 
However, when doubling the load torque the maximum 
acceleration amplitude is also doubled.  

The impact of a backlash between the tooth flanks in 
the worm gear is illustrated in Figure 12. The backlash 
affects the system in particular for small load torques (i.e., 
for a small preload). After the backlash has been passed 
due to the direction change of the load torque, for 2-3 
seconds after starting the load lowering there are contacts 
on both tooth flanks. This is observed in particular for 
larger backlash. The amplitudes become 2-4 times bigger 
than for the backlash-free case (cf. Figure 11). 



 

Figure 12: Normal force at teeth over time for the reel 

changer with elastic drive (point P1) and backlashes of  

δ = 0.25, 0.5, and 0.75mm (top to bottom; one full rotation in 

 8 s) 

3.2.3 Time-Domain Simulation for the Unstable 

Parameter Set P7  

Figure 13 to Figure 17 show the time functions for the 
reel changer without backlash using the parameter set P7 
in Figure 4 (i.e., with a ten times smaller inertia 

1J  and a 

ten times smaller stiffness kT compared to the original 
parameter set P1 (28)). 
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Figure 13: Angular acceleration of the gear wheel 
2ϕ&&  during 

the lifting of the load for the parameter set P7 (there is also 

chatter during lifting) 

First: The maximum acceleration during load low-
ering (interval from 2 s to 6 s in Figure 13) reaches about 
700 rad/s2. It is 5.5 times bigger than for the parameter set 
P1 in Figure 8. 

Reason: The natural frequencies of the system (81 Hz 
and 21 Hz) are close to twice the chatter frequency and 
half the chatter frequency. When lowering the load the 
worm shaft initially oscillates with the chatter frequency 
41.8 Hz (cf. Figure 15). These vibrations excite the natural 
oscillations at 81 and 21 Hz. Within the time interval from 
2.3 s to 2.6 s the excitation with the resonance-like re-
sponses can be seen. The amplitudes of the forced vibra-
tions reach their maximum values very quickly. After-
wards the system oscillates “stationary” with frequencies 
around 31 Hz=(21+41)/2 Hz and 61 Hz=(81+41)/2 Hz 
(see Figure 14). 

Second: In Figure 14 the contact parameter S changes 
its sign several times within one period. 

Reason: As seen in Figure 15, the originally positive 
speed of the worm (upper red line om_inertia1) reaches 
zero and even small negative values due to the oscillations. 

Consequently, the parameter S changes sign several times 
per period, depending on the flank contact (positive or 
negative relative angle ϕ∆ ) and the rotary speed 

1ϕ& . 
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Figure 14: Angular acceleration  
2ϕ&&  of the gear wheel 

(zoomed section of Figure 13) and parameter S during load 

lowering for the parameter set P7 

 

Figure 15: Rotary speed 
1ϕ&  of the worm and parameter sf of 

the flank friction for the parameter set P7 during load  

lowering 

Third: The blue (lower) curve sf-flankFriction in 
Figure 15 shows the state sf of the friction between the 
tooth flanks in the worm gear (0 – sticking, +1 or -1 - slid-
ing). Apparently, the friction contact sticks for small ro-
tary speeds 

1ϕ&  of the worm. The sticking friction (together 

with the self-locking) brakes the oscillations and restricts 
the amplitude growth. 

Fourth: In this variant the chatter vibrations continue 
into the lifting phase in the interval between 6 s and 10 s 
and do not die out (cf. Figure 13). 

Reason: Figure 16 shows a segment of Figure 13 dur-
ing lifting in a time interval from 7.9 s to 8 s (end of the 
full rotation) and the corresponding parameter S. There 
are several segments per period, where S becomes nega-
tive. As a consequence the system becomes unstable also 
in the lifting phase. The time intervals, where 1−=S , 
cover about 40 % of a period. The energy brought into the 
system in these phases is large enough to continue to ex-
cite the chatter. Thus, chatter is possible during the lifting 
phase too. If in the stable phases the vibrations are not 
damped strongly enough (due to low damping or strong 
excitation in the unstable phases), the chatter will persist. 
Then a small excitation will be sufficient for exciting and 
keeping alive the chatter. 
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Figure 16: Angular acceleration  
2ϕ&&  of the gear wheel 

(zoomed section of Figure 13) and parameter S during lifting 

for the parameter set P7 

There are different influences of parameter variations 
for this reel changer with parameter set P7. The doubling 
of the drive speed of the motor is virtually double the 
vibration amplitudes. 



Figure 17 illustrates the influence of the backlash in 
the tooth contact for the parameter set P7. The maximum 
amplitude of the normal force (about 280 kN) is virtually 
independent of the backlash in the interval from 0 to 0.75 
mm. The bigger the backlash, the earlier the vibration dies 
out in the lifting phase. So, the backlash stabilizes the 
system.

 
Figure 17: Normal force at teeth for the reel changer with 

elastic drive (parameter set P7) for backlashes δ =0.25, 0.5 

and 0.75mm (from top to bottom) during one full rotation in 

8 s. 

3.2.4 Time-Domain Simulation for Stable 

Parameter Sets 

If the inertia J1 is tripled to 0.3 kgm², the simulation 
shows no chatter during the load lowering, albeit S is 
negative all the time. This coincides with the location of 
the parameter point P2, which is situated in the stable re-
gion in Figure 4. Figure 18 shows the respective drive 
shaft torque and the evolution of the parameter S. S equals 
-1 during lowering. When lifting the load, the torque is 
about 5 times bigger than in the lowering phase (due to the 
self-braking of the worm gear). 

Comparable simulation results are obtained for the 
inertia J1=0.033 kgm², which is three times smaller than in 
(28) (cf. P3 in the lower stable region in Figure 4). Also, 

the variation of the shaft stiffness Tk  (two times bigger or 

five times smaller than in the base parameter set (28)) 
gives the same results as shown in Figure 18. All lowering 
phases are stable. These parameter variants are reflected 

by the points P4 and P5 in Figure 4, which belong to the 
stable region. 
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Figure 18: Drive shaft torque and parameter S in a reel 

changer with elastic drive and without backlash for the 

stable parameter set P2 

Another parameter variation is described by the point 
P6: 2.01 =J  kgm², 12000=Tk Nm/rad, 2=

TV
D . This 

point belongs to the unstable region in Figure 4 (for the 
damping measure 014.0=

V
D ). For an increased damp-

ing measure 056.0=
V

D  the point moves to the stable 

region (cf. Figure 5). Consequently, the simulation for 
056.0=

V
D  does not show chatter vibrations and gives 

the same results as seen in Figure 18. 
 

3.2.5 Consideration of Neighboring Components 

In practical applications the worm gear, which is the 
core of the model described here, is enclosed by further 
vibratory components. An estimation of the influence of 
additional masses and dampers on the drive side as well as 
on the driven side with respect to the FÜSGEN condition 
(21) is found in [6], an estimation with respect to condi-
tion (19) in [9]. 

For real systems these statements can only provide a 
rough orientation, since the additional drive components 
contribute several new masses and stiffnesses, which 
dynamically interact. In this case, reliable results are only 
achievable via simulation. 

Here this shall be illustrated using an unstable worm 
gear which is parameterized such, that it corresponds to 
point P1 in Figure 4. 

Compared to Figure 7 the additional inertia inertia4 

(see Figure 19) on the drive side increases the equivalent 
drive mass and thus the inertia ratio 

21 / JJ . This implies 

that the point P1 moves towards P2 in the upper stable 
region. If the additional inertia and the stiffness of spring-

Damper1 are large enough and the stiffness of spring-

Damper4 is small enough, the worm gear becomes stable. 
Otherwise the system remains unstable and further 
interaction between the chatter vibrations and natural 
vibrations are possible. 
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Figure 19: Model of the worm gear with additional inertia and elasticity on the drive side 
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Figure 20: Accelerations 
1ϕ&& , 

4ϕ&&  of the inertias inertia1 and 

inertia4 and parameter S (bold line) in the model according 

to Figure 19 

In the model as seen in Figure 19 the inertia4 intro-
duces a third natural frequency of 116 Hz. This frequency 
is close to the third multiple of the chatter frequency 
(42 Hz*3=126 Hz). As a consequence the chatter 
vibrations very strongly excite vibrations in the natural 
frequency of 122 Hz, which is located between the natural 
frequency of 116 Hz and the third harmonic of the chatter 
at 126 Hz. This is well visible in the acceleration of 
inertia4 in Figure 20. 

Summary 

The presented vibratory model for the worm gear cov-
ers the essential geometry, mass, stiffness, and damping 
parameters as well as friction. 

It was shown, under which conditions self-excited 
chatter vibrations arise in worm gears with a flexible drive 
shaft and an elastic gear contact – even for a constant fric-
tion coefficient. 

For vibratory systems with 2 degrees of freedom sta-
bility charts can be computed, from which parameter re-
gions for stable as well as unstable operations can be de-
rived. 

Due to the permanent change between stable (damped) 
and unstable (excited) ranges there arise periodic oscilla-
tions with finite amplitudes. A numerical simulation pro-
vides quantitative predictions about vibration amplitudes 
and component loads - also for the chatter vibrations.  

The stability of the system depends on the damping 
ratio DTV as well as on the absolute value of the damping 
measures (DT and DV). The unstable regions shrink with 
increasing DV of the toothing and for a constant damping 
ratio DTV. 

The backlash does not influence the location of the 
stable regions, but it influences the dynamic loads. There 
are parameter ranges, where the dynamic load decreases 
with increasing backlash. 

The presented worm gear model can be coupled to 
other drive components in a modular way as it is done, 
e.g., in the program SimulationX. 

SimulationX can simulate arbitrary worm gears, their 
interactions with neighboring vibratory components on the 
drive side or on the driven side, as well as the influence of 
the bearings. 

It is recommended to use these tools for the dimen-
sioning of worm gears in drive systems in order to con-
struct safe and economic products. 
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