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Abstract: For the development of robust, reliable, and smoothly 

running planetary gear stages the assessment of their vibration 

behavior and dynamical properties plays an important role 

already in the early design phases. This paper introduces a 

special sub-structure, which forms the base model for 

implementing all planetary gear configurations. Such models 

permit the dynamical simulation of planetary gearboxes with an 

arbitrary number of elastically mounted planets – considering the 

stiffness characteristics in the tooth contacts (including backlash 

and changing flank contacts) as well as all relevant toothing 

parameters (number of teeth, pressure angle, total engagement, 

addendum modification, etc.). By combining the base models 

with vibration models of the adjacent components in the drive a 

system simulation becomes possible, as well as the assessment 

of interactions with hydraulic or electro-mechanical components. 

 

Keywords: Vibration; Planetary gear; Dynamical simulation; 

Modeling; Multibody system. 

 

 

1 Introduction 

The existing structures for planetary gearboxes have 

been systematically studied in the past and are well 

described in the literature (e.g. [3] and [7]). However, in 

this literature the structures are assembled from rigid 

bodies and only kinematic (and, with respect to inertia 

forces, kinetostatic) laws are taken into account. The 

modeling and simulation of elastic and vibratory planetary 

gearboxes up to now is often realized by using existing 

FEM or MBS tools ([5], [9]) or especially tailored 

programs such as SIMPLEX ([8], [10]), which maps 

planetary gearboxes with up to three stages as special 

cases of a „virtual gearbox“. 

Some of the existing programs can import stiffness 

data (bearings, shafts) from FEM programs, tooth contact 

stiffness characteristics from LVR [14] or KISSsoft [16], 

and geometries and mass parameters from CAD tools. As 

discussed in [4] and [9], the result visualization is also 

state of the art in the current construction development 

process. 

Modeling methods and vibration analysis results are 

treated in [2] and [15]. From the extensive literature on the 

current research on vibrations in planetary gearboxes 

exemplarily [4] to [13] are mentioned, which all date to 

the last decade. So far, there does not exist a systematic 

approach for the modeling of elastic vibratory planetary 

gearboxes. 

It is known by now, that the „elastic points“ in 

planetary gearboxes are the coupling points between the 

gears (toothing and bearings). The varying tooth contact 

stiffness is a reason for the parametric excitations of 

vibrations, which in turn are significant causes for gearbox 

noises. Dynamic overloads, which are covered in general 

in DIN 3990, are also to be ascribed substantially to 

vibrations. In many cases the planetary gearboxes excite 

vibrations on the complete drive system, so that the 

coupling of the gearbox to neighboring components is of 

particular importance. 

The authors of [5] and [8] point out, that the 

consideration of the tooth contact stiffness in the different 

contact points also requires the observation of the relative 

phase angles. They also give an estimation for noise 

excitations, which are influenced for instance by the 

torsional stiffnesses between the planet stages. In order to 

include the effects of tilting of particular gearbox 

components onto the load distribution along the tooth 

width, 3D computation models are required [10]. Such 

models require higher efforts in data provision, but in turn 

provide a more precise picture of the real load situations. 

As the models mentioned in [9] and [10], the model in 

[11] contains the bearing stiffnesses fixed in the 3 

coordinate directions in addition to the tangential tooth 

stiffnesses. The quantitative influence of the stiffness on 

the 18 natural frequencies and modes is shown in an 

example. [12] discusses the parametric excitations without 

considering elastic bearings and illustrates the influence of 

some toothing parameters onto the width of all instability 

regions. 

One aim of this paper is to include the multitude of 

planetary gearbox structures into vibration simulation with 

a minimum modeling effort. The base model presented in 

the sequel covers the structures of all planetary gearboxes, 

with arbitrary combinations of internal and external 

toothings. This includes, e.g., the Wolfram gear set as well 

as the more complex Ravigneaux gear set [3]. The 

simulation models, which are assembled from the base 

model, can be evaluated and also combined with other 

model objects using the simulation software ITI-SIM [13], 

[17]. For the forced and parametrically excited vibrations 

the bearing stiffnesses are considered, but also the 

behaviorally important varying tooth contact stiffnesses, 

the phase angles of all toothings, the backlashes, and the 

flank contact changes during the oscillations. All 

interactions between tangential, radial, and axial 

directions are considered. All forces can be evaluated and 

displayed over time or via their spectra, as well as other 



dynamic characteristics. This can be extended towards the 

computation of the load factors. The detailed vibration 

model is suitable for the analysis of the parameter 

influences relevant for the vibrations, which are of interest 

for the precise dimensioning of the planetary gearbox. All 

ITI-SIM interfaces, such as to FEM, MBS, and 

MATLAB/Simulink, can be used in the models. 

 

2 Modeling of Arbitrary Planetary Gearbox 

Structures 

2.1 Derivation of Common Base Structures for all 

Planetary Gearboxe 

Due to the multitude of planetary gearbox structures 

the development of special model objects for each 

planetary gearbox type appears to be inefficient. 

Consequently, common base structures are searched for, 

from which all planetary gearboxes can be constructed. 

According to the possible assembly of the central and 

planetary gears as external or internal toothing result eight 

different fundamental forms for planetary gears (Figure 1; 

e.g., [3] or [7]). 

 

Figure 1  8 Fundamental Planetary Gearboxes 

The smallest common substructure of planetary 

gearboxes (called „base structure“ in the sequel) is 

composed of a central gear, a planet and the planet carrier. 

Depending on the toothing there exist 3 variants [13], 

which are depicted in Figure 2. 

 

Figure 2  Variants for the base structure of planetary 

gearboxes 

 

2.2 Model Object Implementation 

The model objects to be developed shall become part 

of the system simulation software ITI-SIM [17]. This 

allows to model different properties of the system, such as 

the behavior of bearings or external components, outside 

of the base structure (cf. section 2.6). So the model objects 

to be implemented only have to compute the forces due to 

the elastic deformations at the teeth and to forward these 

to so called nodes. These nodes consider the inertia 

properties of the respective parts (cf., e.g., Figure 5). The 

nodes compute from all acting forces Fe and the mass m 

the acceleration a (1) and, via integration, the velocities 

and displacements of the components: 

m

F
a

e∑=                                                     (1) 

It is sufficient, to derive the mathematical background 

for one base structure only. The equations for the others 

differ in signs only. Using tooth numbers and axle 

distances with signs will result automatically in the correct 

formulations using just one set of equations (see e.g. [6]). 

The tooth contact stiffness acts in the normal direction 

(coordinate direction xbn). If the deformation at the tooth 

is multiplied by the contact stiffness, the result is the 

normal force in the contact. Here the current flank in 

contact (left or right) is estimated and delivers a force. 

Within the backlash there is no contact and the normal 

force is zero. If both flanks are in contact, both deliver a 

force. In the model it is checked first, which flanks are in 

contact and then the normal force Fbn is computed for each 

flank in contact according to (2), taking the backlash jn 

and the stiffness kbn into account. The resulting normal 

forces are then superposed. This algorithm covers all 

possible cases. 
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Apart from being able to use constant mean contact 

stiffnesses, the developed model objects also allow to 

consider stiffness variations during meshing. Several 

parameterization options, which are available on just a 

mouse click, are presented in the sequel. 

All possible parameterizations use a function for the 

varying stiffness in the contact. For each tooth pair in 

contact the contact stiffness is determined in agreement 

with its phase angle. The total contact stiffness kγ results 

from the superposition of the individual stiffnesses. 

In order to compute the number of engaged teeth and 

the meshing position the angular difference ϕ∆  between 

the central gear and the planet must be known. In order to 

obtain the correct phase angle, the angle ς of the planet in 

the assembly has to be taken into account too 

ςϕϕϕ +−=∆ OC                                               (3) 

The contact forces are computed separately for the left 

and the right tooth flank. A flank in contact delivers a 

non-zero force, so flank changes are easily observable. 

With respect to the stiffness, a one-sided contact results in 

the plain contact stiffness, whereas a double-sided contact 

also doubles the stiffness. If the is no contact, the teeth are 

in the backlash and the effective stiffness is zero. 

 

2.3 Gearbox Modeling by Combining Base Structures 

For all variants of the base structure, which are 

displayed in Figure 1, model objects were implemented. 

Figure 3 exemplarily shows the type A with all its 

connectors and their assignments. 

The model objects themselves compute the forces and 

torques resulting from the deformations of the teeth and 

the elastic bearing of the planet on the planet carrier. All 

inertias are modeled externally using the adequate node 

objects. At the same time these nodes are the branching 



points in the model structure, to which further elements or 

base structures can be connected. The combination of 

several base structures and the corresponding masses and 

inertias for the individual gears permits the modeling of 

all kinds of planetary gearboxes and the examination of all 

degrees of freedom relevant for the multibody system 

dynamics of the gearbox. As an example Figure 4 shows 

the simulation model for a Ravigneaux gear set, whose 

gear layout is displayed in  Figure 5. 
 

No. Connectable to No. Connectable to 

1 Inertia of the central 

gear 

7 Bearing of the central 

gear in x direction 

2 Inertia of the planet 

carrier 

8 Bearing of the planet 

carrier in z direction 

3 Inertia of the planet 

with respect to its axis 

9 Bearing of the planet 

carrier in y direction 

4 Inertia of the planet 

with respect to its orbit  

10 Bearing of the planet 

carrier in x direction 

5 Bearing of the central 

gear in z direction 

11 Node for the radial 

movement of the planet 

6 Bearing of the central 

gear in y direction 

12 Node for the axial 

movement of the planet 

 

Figure 3   Symbol and connectors for the base structure type 

A model object 

 

 

Figure 4  Simulation model for a Ravigneaux gear set, 2nd 

gear 

 

 

Figure 5  Structural layout of a planetary gearset according 

to Ravigneaux[3], 2nd gear 

3 Example: Gearbox with 3 Planets  

3.1 Computational Model 

The model corresponds to the one presented in [12], 

where a varying stiffness in the tooth contact is considered, 

but the bearing stiffness is neglected. Figure 6  shows the 

respective gearbox layout and the corresponding ITI-SIM 

model structure. 

 

Figure 6  Gearbox layout and model structure for the 

discussed example 

 

3.2 Main Instability Regions for Parametric 

Excitations 

When providing a constant torque at the sun and 

simulating a run-up, the normal forces at the teeth are 

recorded as seen in Figure 7. The parametric excitation 

due to the varying stiffness in the tooth contact passes 

different resonance regions, where resonant responses and 

amplitude peaks are recorded. 

 

Figure 7  Normal tooth forces in a simulated run-up 

A fast Fourier transformation (FFT) identifies the 

frequency components in these signals: 

 

Figure 8  Spectra of the normal forces at the planet teeth 

According to the theory ([12], [15]), the main 

instability region for parametric excitations is located 

around frequencies f = 2 fi /n for small n (n = 1, 2, 3). 

Combined first-order resonances can occur at frequencies 

(fi + fj )/n  (in this case j = 2, 3, 4). 

Figure 8 shows further oscillations with the following 

frequencies corresponding to the theory: 

300 Hz  ≈ f2/4  ≈ f3/6 ; 620 Hz  ≈ f2/2 ; 
 900 Hz  ≈ f3/2; 1280 Hz  ≈ f2;  
1650 Hz  ≈ (f2 + f3)/2 

1800 Hz  ≈ f3  ≈ f4; 2200 Hz  ≈ f5 ;  



2500 Hz  ≈ 2 f2; 3250 Hz  ≈ f2 + f3  ≈ f2 + f4 

3450 Hz  ≈ f2 + f5; 3600 Hz  ≈ 2 f3  ≈ 2 f4. 
3.3 Influence of Tooth Contact Phase Angles on the 

Parametric Excitation Intensity 

In the sequel the influence of the phase angles of the 

three tooth contacts is examined. 

In the first case the planets are aligned symmetrically 

(all 120° apart from each other). The sun gear has 33 teeth, 

the ring gear 114. Thus, the three planets are engaged with 

one tooth in the sun gear as well as in the ring gear. The 

planets are located such, that the sum stiffnesses of all 

tooth contacts are in phase with respect to the sun gear. 

I.e., all minima and maxima of the stiffness curves 

coincide (Figure 9). The stiffness at the sun gear oscillates 

between k = 0.8·10
8
 and 1.3·10

8
 N/m, which causes a 

strong parametric excitation due to the summation of the 

oscillation amplitudes of all stiffnesses. 

 

 

Figure 9 Synchronous change of all meshing spring 

stiffnesses for zS=33, zR=114, and 3××××120° 

In the second case the influence of the relative 

positions of the tooth contact points is studied. For this the 

planet axes are asymmetrically positioned. An offset is 

possible in the general, if the offset angle at the planet 

carrier integral multiple of the minimum angle δmin ([3], 
[7]) amounts to. 

δmin = 360 °/(zS+ zH)                 (4) 
In the case of zS = 33 teeth at the sun gear and zH = 

114 teeth at the ring gear results a minimum offset angle 

of  

δmin = 360 °/(zS+ zH)= 2.4489 °  

So, if the planet carrier is not designed with three 

identical 120° angles, but with 

γ1 = 122.45 °, γ2= 122.45 °, γ3 = 115.10 °,  
the vibration excitation in tangential direction will be 

reduced, whereas in radial direction there is no 

equalization anymore due to the disturbed symmetry. The 

resulting curve for the summated meshing stiffnesses is 

shown in Figure 10. 

 

 

Figure 10 Meshing spring stiffnesses for zS=33, zR=114, and 

an agular offset according to (4) 

For the two cases run-ups were simulated. In order to 

clearly assign resonances to the excitation orders, the 

simulation results were processed by an order analysis. 

The results are shown in Figure 11. 

Figure 11 Order analysis results for the normal tooth contact  

      forces in cases 1 and case 2 

       The inclined black lines in Figure 11 mark the orders 

(multiples) of the tooth meshing frequency fEng. This 

frequency can computed according to (5). It has to be 

taken into account that the number of teeth zR of the ring 

gear has to bear a negative sign due to the internal 

toothing. nS is the rotary speed of the sun gear in rpm and 

zS the number of teeth on the sun gear 
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The excitation orders found in the signal over time 

appear as colored stripes along the order lines in the 

sonogram. The natural frequencies, which are present in 

the signal, are marked by amplitude rises, which are 

located on vertical lines in the diagram. Resonances can 

appear at all crossings between excitation order lines and 

natural frequency lines. The appearance of a resonance 

results in a colored spot at the crossing point, which 

indicates an amplitude rise. On the ordinate of the diagram 

the rotary speeds, at which the resonances occur, can be 

read off. In case 1 (left diagram in Figure 11) for instance, 

at sung gear speeds of about 1500 rpm there are 

resonances in the orders 1 to 7 of the tooth meshing 

frequency. In the signal over time (Figure 7) this 

corresponds to the rise in vibration amplitudes at about 

0.39 s. Since the speed rises from 0 to 4000 rpm within 

one second, 1500 rpm are reached at about this time. 

It is obvious, that due to the periodic (but not 

harmonic) tooth meshing in all cases the orders 1 to 7 of 

the excitation cause resonances, if a higher harmonic of 

the tooth meshing frequency coincides with a natural 

frequency of the gearbox. The natural frequencies are 

located at 1240 Hz, 1800 Hz, and 2200 Hz. It has to be 

pointed out, that here one encounters not resonances of 

forced vibrations, but the wider instability ranges of 

parametrically excited oscillations. 

In case 1 the resonances appear at the frequencies, 

which were already identified via the FFT analysis in 

Figure 8. The resonances at a sun gear speed of 1500 rpm 

(meshing frequency ≈ 640 Hz) in case 1  corresponds to 
multiples of f2/2 ≈  620 Hz, at 2600 rpm these are 
multiples of f5/2 ≈1100 Hz, and at 3100 rpm multiples of 
(f2 + f3)/2  ≈1450 Hz respectively. 



Also in case 2 there is less oscillation in the tangential 

stiffness with respect to the sun gear due to the 

improvement in the meshing conditions after changing the 

angles. In consequence there are fewer resonance areas 

with less intensity compared to case 1. The 3rd and 4th 

natural frequencies are again subject to stronger 

excitations, because the excitation did not change from 

with respect to the planets. 

It has to be pointed out in general, that modifications 

usually lead to improvements in one speed range only. A 

global improvement is not achievable. Usually the 

changes cause the appearance of new resonance regions. 

This can be observed in case 3, where such resonances 

arise between 4000 and 5000 rpm, which were not 

observable in case 1. 

Further investigations showed, that the consideration 

of bearing stiffnesses reduces the natural frequencies and 

changes the corresponding mode shapes. The instability 

regions, which are already present for rigid bearings, 

become wider. Also, there appear new instability regions, 

which result in unbalanced bearing forces due to the 

translatory movement of the planets. 

Further factors influencing the width and height of 

instability regions are the damping as well as the shape of 

the stiffness variation curve in the tooth contact. 

4 Summary and Perspectives 

An efficient method for modeling arbitrary planetary 

gearbox configurations, considering nonlinear tooth 

contact stiffnesses and the influence of the bearings in all 

coordinate directions in space, was presented. Based on 

typical examples the achieved simulation results were 

evaluated and discussed. The influence of different model 

parameters on the parametrically excited vibrations was 

analyzed. The three cases under study showed the 

particular influence of the relative phase in the gear 

meshing points on the intensity of the parametric 

excitations. 

The results show, that the presented modeling 

approach is a practical and flexible method, which also 

leads to new insights into the behavior of the modeled 

systems. The developed models are suited for 

dimensioning tasks and the clarification of vibration 

causes (fault detection, diagnostics). In the near future the 

models are going to be used for the assessment of 

smoothness and operational reliability of planetary 

gearboxes, e.g., in gearboxes for passenger cars or wind 

turbines. 

. 
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