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Abstract: For the development of robust, reliable, and smoothly
running planetary gear stages the assessment of their vibration
behavior and dynamical properties plays an important role
already in the early design phases. This paper introduces a
special sub-structure, which forms the base model for
implementing all planetary gear configurations. Such models
permit the dynamical simulation of planetary gearboxes with an
arbitrary number of elastically mounted planets — considering the
stiffness characteristics in the tooth contacts (including backlash
and changing flank contacts) as well as all relevant toothing
parameters (number of teeth, pressure angle, total engagement,
addendum modification, etc.). By combining the base models
with vibration models of the adjacent components in the drive a
system simulation becomes possible, as well as the assessment
of interactions with hydraulic or electro-mechanical components.
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1 Introduction

The existing structures for planetary gearboxes have
been systematically studied in the past and are well
described in the literature (e.g. [3] and [7]). However, in
this literature the structures are assembled from rigid
bodies and only kinematic (and, with respect to inertia
forces, kinetostatic) laws are taken into account. The
modeling and simulation of elastic and vibratory planetary
gearboxes up to now is often realized by using existing
FEM or MBS tools ([5], [9]) or especially tailored
programs such as SIMPLEX ([8], [10]), which maps
planetary gearboxes with up to three stages as special
cases of a ,,virtual gearbox“.

Some of the existing programs can import stiffness
data (bearings, shafts) from FEM programs, tooth contact
stiffness characteristics from LVR [14] or KISSsoft [16],
and geometries and mass parameters from CAD tools. As
discussed in [4] and [9], the result visualization is also
state of the art in the current construction development
process.

Modeling methods and vibration analysis results are
treated in [2] and [15]. From the extensive literature on the
current research on vibrations in planetary gearboxes
exemplarily [4] to [13] are mentioned, which all date to
the last decade. So far, there does not exist a systematic
approach for the modeling of elastic vibratory planetary
gearboxes.

It is known by now, that the ,elastic points” in
planetary gearboxes are the coupling points between the

gears (toothing and bearings). The varying tooth contact
stiffness is a reason for the parametric excitations of
vibrations, which in turn are significant causes for gearbox
noises. Dynamic overloads, which are covered in general
in DIN 3990, are also to be ascribed substantially to
vibrations. In many cases the planetary gearboxes excite
vibrations on the complete drive system, so that the
coupling of the gearbox to neighboring components is of
particular importance.

The authors of [5] and [8] point out, that the
consideration of the tooth contact stiffness in the different
contact points also requires the observation of the relative
phase angles. They also give an estimation for noise
excitations, which are influenced for instance by the
torsional stiffnesses between the planet stages. In order to
include the effects of tilting of particular gearbox
components onto the load distribution along the tooth
width, 3D computation models are required [10]. Such
models require higher efforts in data provision, but in turn
provide a more precise picture of the real load situations.

As the models mentioned in [9] and [10], the model in
[11] contains the bearing stiffnesses fixed in the 3
coordinate directions in addition to the tangential tooth
stiffnesses. The quantitative influence of the stiffness on
the 18 natural frequencies and modes is shown in an
example. [12] discusses the parametric excitations without
considering elastic bearings and illustrates the influence of
some toothing parameters onto the width of all instability
regions.

One aim of this paper is to include the multitude of
planetary gearbox structures into vibration simulation with
a minimum modeling effort. The base model presented in
the sequel covers the structures of all planetary gearboxes,
with arbitrary combinations of internal and external
toothings. This includes, e.g., the Wolfram gear set as well
as the more complex Ravigneaux gear set [3]. The
simulation models, which are assembled from the base
model, can be evaluated and also combined with other
model objects using the simulation software ITI-SIM [13],
[17]. For the forced and parametrically excited vibrations
the bearing stiffnesses are considered, but also the
behaviorally important varying tooth contact stiffnesses,
the phase angles of all toothings, the backlashes, and the
flank contact changes during the oscillations. All
interactions between tangential, radial, and axial
directions are considered. All forces can be evaluated and
displayed over time or via their spectra, as well as other



dynamic characteristics. This can be extended towards the
computation of the load factors. The detailed vibration
model is suitable for the analysis of the parameter
influences relevant for the vibrations, which are of interest
for the precise dimensioning of the planetary gearbox. All
ITI-SIM interfaces, such as to FEM, MBS, and
MATLAB/Simulink, can be used in the models.

2 Modeling of Arbitrary Planetary Gearbox
Structures
2.1 Derivation of Common Base Structures for all
Planetary Gearboxe
Due to the multitude of planetary gearbox structures
the development of special model objects for each
planetary gearbox type appears to be inefficient.
Consequently, common base structures are searched for,
from which all planetary gearboxes can be constructed.
According to the possible assembly of the central and
planetary gears as external or internal toothing result eight
different fundamental forms for planetary gears (Figure 1;

e.g., [3]or [7]).
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Figure 1 8 Fundamental Planetary Gearboxes

The smallest common substructure of planetary
gearboxes (called ,base structure“ in the sequel) is
composed of a central gear, a planet and the planet carrier.
Depending on the toothing there exist 3 variants [13],
which are depicted in Figure 2.

+ central gear - external toothing + central gear - internal toothing ~ central gear - external tacthing
(sun gear) (Ring gear) (sun gear)
« planet - external toothing « planet - external toothing « planet - internal tacthing
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Figure 2 Variants for the base structure of planetary

gearboxes

2.2 Model Object Implementation

The model objects to be developed shall become part
of the system simulation software ITI-SIM [17]. This
allows to model different properties of the system, such as
the behavior of bearings or external components, outside
of the base structure (cf. section 2.6). So the model objects
to be implemented only have to compute the forces due to
the elastic deformations at the teeth and to forward these
to so called nodes. These nodes consider the inertia

properties of the respective parts (cf., e.g., Figure 5). The
nodes compute from all acting forces F, and the mass m
the acceleration a (1) and, via integration, the velocities
and displacements of the components:

a:—zFe
m

It is sufficient, to derive the mathematical background
for one base structure only. The equations for the others
differ in signs only. Using tooth numbers and axle
distances with signs will result automatically in the correct
formulations using just one set of equations (see e.g. [6]).

The tooth contact stiffness acts in the normal direction
(coordinate direction xy,). If the deformation at the tooth
is multiplied by the contact stiffness, the result is the
normal force in the contact. Here the current flank in
contact (left or right) is estimated and delivers a force.
Within the backlash there is no contact and the normal
force is zero. If both flanks are in contact, both deliver a
force. In the model it is checked first, which flanks are in
contact and then the normal force Fy, is computed for each
flank in contact according to (2), taking the backlash j,
and the stiffness ky, into account. The resulting normal
forces are then superposed. This algorithm covers all
possible cases.

F}m = (Axbn - ]7”) ’ kbn (2)

Apart from being able to use constant mean contact
stiffnesses, the developed model objects also allow to
consider stiffness variations during meshing. Several
parameterization options, which are available on just a
mouse click, are presented in the sequel.

All possible parameterizations use a function for the
varying stiffness in the contact. For each tooth pair in
contact the contact stiffness is determined in agreement
with its phase angle. The total contact stiffness k, results
from the superposition of the individual stiffnesses.

In order to compute the number of engaged teeth and

the meshing position the angular difference A between

(M

the central gear and the planet must be known. In order to
obtain the correct phase angle, the angle ¢ of the planet in
the assembly has to be taken into account too

Ap=Qc—¢y+¢ 3

The contact forces are computed separately for the left
and the right tooth flank. A flank in contact delivers a
non-zero force, so flank changes are easily observable.
With respect to the stiffness, a one-sided contact results in
the plain contact stiffness, whereas a double-sided contact
also doubles the stiffness. If the is no contact, the teeth are
in the backlash and the effective stiffness is zero.

2.3 Gearbox Modeling by Combining Base Structures

For all variants of the base structure, which are
displayed in Figure 1, model objects were implemented.
Figure 3 exemplarily shows the type A with all its
connectors and their assignments.

The model objects themselves compute the forces and
torques resulting from the deformations of the teeth and
the elastic bearing of the planet on the planet carrier. All
inertias are modeled externally using the adequate node
objects. At the same time these nodes are the branching



points in the model structure, to which further elements or
base structures can be connected. The combination of
several base structures and the corresponding masses and
inertias for the individual gears permits the modeling of
all kinds of planetary gearboxes and the examination of all
degrees of freedom relevant for the multibody system
dynamics of the gearbox. As an example Figure 4 shows
the simulation model for a Ravigneaux gear set, whose
gear layout is displayed in Figure 5.

No. Connectable to No. Connectable to
1 Inertia of the central 7 Bearing of the central
gear gear in x direction

2 Inertia of the planet 8 Bearing of the planet
carrier carrier in z direction

3 Inertia of the planet 9 Bearing of the planet
with respect to its axis carrier in y direction

4 Inertia of the planet 10 Bearing of the planet

carrier in x direction
Node for the radial
movement of the planet
Node for the axial
movement of the planet

with respect to its orbit
5 Bearing of the central 11
gear in z direction
6 Bearing of the central 12
gear in y direction

2 910 1112

5 6 7

Figure 3 Symbol and connectors for the base structure type
A model object
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Figure S Structural layout of a planetary gearset according
to Ravigneaux[3], 2nd gear

3 Example: Gearbox with 3 Planets
3.1 Computational Model

The model corresponds to the one presented in [12],
where a varying stiffness in the tooth contact is considered,
but the bearing stiffness is neglected. Figure 6 shows the
respective gearbox layout and the corresponding ITI-SIM
model structure.
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Figure 6 Gearbox layout and model structure for the
discussed example

3.2 Main Instability Regions for Parametric

Excitations

When providing a constant torque at the sun and
simulating a run-up, the normal forces at the teeth are
recorded as seen in Figure 7. The parametric excitation
due to the varying stiffness in the tooth contact passes
different resonance regions, where resonant responses and
amplitude peaks are recorded.
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Figure 7 Normal tooth forces in a simulated run-up

A fast Fourier transformation (FFT) identifies the
frequency components in these 51gnals
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Figure 8 Spectra of the normal forces at the planet teeth

According to the theory ([12], [15]), the main
instability region for parametric excitations is located
around frequencies f = 2 f; /n for small n (n = 1, 2, 3).
Combined first-order resonances can occur at frequencies
(fi+f;)/n (inthiscasej=2, 3, 4).

Figure 8 shows further oscillations with the following
frequencies corresponding to the theory:

300Hz =f,/4 =1£3/6 ;620 Hz = 1,/2;

900 Hz = f3/2; 1280 Hz = f;;

1650 Hz = (f, + £3)/2

1800 Hz = f; = f;; 2200 Hz = f; ;



2500 Hz :Zfz; 3250 Hz :f2+f3 :f2+f4

3450 Hz = £, +£5; 3600 Hz =2 f; =2 f,.

3.3 Influence of Tooth Contact Phase Angles on the
Parametric Excitation Intensity

In the sequel the influence of the phase angles of the
three tooth contacts is examined.

In the first case the planets are aligned symmetrically
(all 120° apart from each other). The sun gear has 33 teeth,
the ring gear 114. Thus, the three planets are engaged with
one tooth in the sun gear as well as in the ring gear. The
planets are located such, that the sum stiffnesses of all
tooth contacts are in phase with respect to the sun gear.
Le., all minima and maxima of the stiffness curves
coincide (Figure 9). The stiffness at the sun gear oscillates
between k = 0.8-10° and 1.3-10° N/m, which causes a
strong parametric excitation due to the summation of the
oscillation amplitudes of all stiffnesses.
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Figure 9 Synchronous change of all meshing spring
stiffnesses for zg=33, zrp=114, and 3x120°

In the second case the influence of the relative
positions of the tooth contact points is studied. For this the
planet axes are asymmetrically positioned. An offset is
possible in the general, if the offset angle at the planet
carrier integral multiple of the minimum angle 8., ([3],
[7]) amounts to.

(8min = 360 °/(zs+ zy) 4)

In the case of zg = 33 teeth at the sun gear and zy =
114 teeth at the ring gear results a minimum offset angle
of

[18min = 360 °/(zgt+ zy)=2.4489 °

So, if the planet carrier is not designed with three
identical 120° angles, but with

[y, =122.45°, [y,=122.45°, [y;=115.10 °,

the vibration excitation in tangential direction will be
reduced, whereas in radial direction there is no
equalization anymore due to the disturbed symmetry. The
resulting curve for the summated meshing stiffnesses is
shown in Figure 10.
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Figure 10 Meshing spring stiffnesses for zg=33, zg=114, and
an agular offset according to (4)

For the two cases run-ups were simulated. In order to
clearly assign resonances to the excitation orders, the
simulation results were processed by an order analysis.
The results are shown in Figure 11.
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Case 2:25=33, zg=114
with angular offset
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Figure 11 Order analysis results for the normal tooth contact
forces in cases 1 and case 2

The inclined black lines in Figure 11 mark the orders
(multiples) of the tooth meshing frequency fg,,. This
frequency can computed according to (5). It has to be
taken into account that the number of teeth zp of the ring
gear has to bear a negative sign due to the internal
toothing. ng is the rotary speed of the sun gear in rpm and
zg the number of teeth on the sun gear

ng
=5, 5
fEng 60 1_ ( )

Zg

The excitation orders found in the signal over time
appear as colored stripes along the order lines in the
sonogram. The natural frequencies, which are present in
the signal, are marked by amplitude rises, which are
located on vertical lines in the diagram. Resonances can
appear at all crossings between excitation order lines and
natural frequency lines. The appearance of a resonance
results in a colored spot at the crossing point, which
indicates an amplitude rise. On the ordinate of the diagram
the rotary speeds, at which the resonances occur, can be
read off. In case | (left diagram in Figure 11) for instance,
at sung gear speeds of about 1500 rpm there are
resonances in the orders 1 to 7 of the tooth meshing
frequency. In the signal over time (Figure 7) this
corresponds to the rise in vibration amplitudes at about
0.39 s. Since the speed rises from 0 to 4000 rpm within
one second, 1500 rpm are reached at about this time.

It is obvious, that due to the periodic (but not
harmonic) tooth meshing in all cases the orders 1 to 7 of
the excitation cause resonances, if a higher harmonic of
the tooth meshing frequency coincides with a natural
frequency of the gearbox. The natural frequencies are
located at 1240 Hz, 1800 Hz, and 2200 Hz. It has to be
pointed out, that here one encounters not resonances of
forced vibrations, but the wider instability ranges of
parametrically excited oscillations.

In case 1 the resonances appear at the frequencies,
which were already identified via the FFT analysis in
Figure 8. The resonances at a sun gear speed of 1500 rpm

(meshing frequency = 640 Hz) in case 1 corresponds to
multiples of f2/2 = 620 Hz, at 2600 rpm these are
multiples of £5/2 =1100 Hz, and at 3100 rpm multiples of
(f2 + £3)/2 =1450 Hz respectively.



Also in case 2 there is less oscillation in the tangential
stiffness with respect to the sun gear due to the
improvement in the meshing conditions after changing the
angles. In consequence there are fewer resonance areas
with less intensity compared to case 1. The 3rd and 4th
natural frequencies are again subject to stronger
excitations, because the excitation did not change from
with respect to the planets.

It has to be pointed out in general, that modifications
usually lead to improvements in one speed range only. A
global improvement is not achievable. Usually the
changes cause the appearance of new resonance regions.
This can be observed in case 3, where such resonances
arise between 4000 and 5000 rpm, which were not
observable in case 1.

Further investigations showed, that the consideration
of bearing stiffnesses reduces the natural frequencies and
changes the corresponding mode shapes. The instability
regions, which are already present for rigid bearings,
become wider. Also, there appear new instability regions,
which result in unbalanced bearing forces due to the
translatory movement of the planets.

Further factors influencing the width and height of
instability regions are the damping as well as the shape of
the stiffness variation curve in the tooth contact.

4 Summary and Perspectives

An efficient method for modeling arbitrary planetary
gearbox configurations, considering nonlinear tooth
contact stiffnesses and the influence of the bearings in all
coordinate directions in space, was presented. Based on
typical examples the achieved simulation results were
evaluated and discussed. The influence of different model
parameters on the parametrically excited vibrations was
analyzed. The three cases under study showed the
particular influence of the relative phase in the gear
meshing points on the intensity of the parametric
excitations.

The results show, that the presented modeling
approach is a practical and flexible method, which also
leads to new insights into the behavior of the modeled
systems. The developed models are suited for
dimensioning tasks and the clarification of vibration
causes (fault detection, diagnostics). In the near future the
models are going to be used for the assessment of
smoothness and operational reliability of planetary
gearboxes, e.g., in gearboxes for passenger cars or wind
turbines.
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